ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что среди всех треугольников с фиксированным углом
В треугольнике KLM проведена биссектриса MN. Через вершину M проходит окружность, касающаяся стороны KL в точке N и пересекающая сторону KM в точке P, а сторону LM — в точке Q. Отрезки KP, QM и LQ соответственно равны k, m и q .Найдите MN.
Дана равнобедренная трапеция, в которую вписана окружность и
около которой описана окружность. Отношение высоты трапеции к
радиусу описанной окружности равно
|
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 149]
Через точку пересечения высот остроугольного треугольника ABC проходят три окружности, каждая из которых касается одной из сторон треугольника в основании высоты. Докажите, что вторые точки пересечения окружностей являются вершинами треугольника, подобного исходному.
Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).
С помощью циркуля и линейки около данного треугольника опишите треугольник, равный другому данному треугольнику.
С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.
В пространстве дан треугольник ABC и сферы S1 и S2, каждая из которых проходит через точки A, B и C. Для точек M сферы S1, не лежащих в плоскости треугольника ABC, проводятся прямые MA, MB и MC, пересекающие сферу S2 вторично в точках A1, B1 и C1 соответственно. Докажите, что плоскости, проходящие через точки A1, B1 и C1, касаются фиксированной сферы либо проходят через фиксированную точку.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 149]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке