ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом? Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении 1 : 2. |
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 831]
В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные точке O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны, а прямые AA1, BB1 и CC1 пересекаются в одной точке.
На сторонах AD и DC ромба ABCD построены правильные треугольники AKD и DMC, причём точка K лежит по ту же сторону от AD, что и прямая BC, а точка M – по другую сторону от DC, чем AB. Докажите, что точки B, K и M лежат на одной прямой.
Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если ∠BDE : ∠EDC = ∠BED : ∠DEA, то треугольник ABC — равнобедренный.
Площадь треугольника ABC равна 2
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 831]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке