Страница:
<< 111 112 113 114
115 116 117 >> [Всего задач: 603]
Одна из боковых сторон трапеции равна сумме оснований.
Докажите, что биссектрисы углов при этой стороне пересекаются на другой боковой стороне.
В трапеции ABCD AD || BC) угол ADB в два раза меньше угла ACB. Известно, что BC = AC = 5 и AD = 6. Найдите площадь трапеции.
Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?
В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что $AK = AC, BK = LC$. Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.
Страница:
<< 111 112 113 114
115 116 117 >> [Всего задач: 603]