Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Каково наибольшее количество последовательных натуральных чисел, у каждого из которых ровно четыре натуральных делителя (включая 1 и само число)?

Вниз   Решение


Вам пришло зашифрованное сообщение: Ф В М Ё Ж Т И В Ф Ю Найдите исходное сообщение, если известно, что шифрпреобразование заключалось в следующем. Пусть x1, x2 - корни трехчлена x2+3x+1. К порядковому номеру каждой буквы в стандартном русском алфавите (33 буквы) прибавлялось значение многочлена f(x)=x6+3x5+x4+x3+4x2+4x+3, вычисленное либо при x=x1, либо при x=x2 (в неизвестном нам порядке), а затем полученное число заменялось соответствующей ему буквой. (Задача с сайта www.cryptography.ru.)

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник можно разрезать на остроугольные треугольники.

ВверхВниз   Решение


В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

ВверхВниз   Решение


Найдите площадь равнобедренного треугольника, если высота, опущенная на основание, равна 10, а высота, опущенная на боковую сторону, равна 12.

ВверхВниз   Решение


Действительные числа $a$, $b$, $c$, $d$ таковы, что $$\frac{a}{b} + \frac{b}{a} = \frac{c}{d} + \frac{d}{c}.$$ Докажите, что произведение каких-то двух чисел из $a$, $b$, $c$, $d$ равно произведению двух других.

ВверхВниз   Решение


Параллелограмм ABCD с углом $ \angle$BAD = arcsin$ {\frac{1}{3}}$ и ромб BCFE с острым углом CBE расположены так, что точки E и F лежат на продолжении стороны AD за точку D. Площадь четырёхугольника DBCE составляет $ {\frac{3}{4}}$ площади параллелограмма. Найдите углы ромба.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 107]      



Задача 54256

Темы:   [ Вспомогательные подобные треугольники ]
[ Средняя линия трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В прямоугольной трапеции основания равны 17 и 25, а большая боковая сторона равна 10. Через середину M этой стороны проведён к ней перпендикуляр, пересекающий продолжение второй боковой стороны в точке P. Найдите MP.

Прислать комментарий     Решение

Задача 54547

Темы:   [ Средняя линия треугольника ]
[ Средняя линия трапеции ]
[ ГМТ - прямая или отрезок ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

Прислать комментарий     Решение

Задача 98329

Темы:   [ Шестиугольники ]
[ Средняя линия трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 10,11

Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.

Прислать комментарий     Решение

Задача 98606

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия трапеции ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что  AK + LC = KL.  Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.

Прислать комментарий     Решение

Задача 108531

Темы:   [ Метод координат на плоскости ]
[ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Пусть  M(x0, y0)  – середина отрезка с концами в точках  A(x1, y1)  и  B(x2, y2).  Докажите, что  x0 = ½ (x1 + x2),  y0 = ½ (y1 + y2).

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .