ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный. На окружности радиуса 12 с центром в точке O лежат точки A и B. Прямые AC и BC касаются этой окружности. Другая окружность с центром в точке M вписана в треугольник ABC и касается стороны AC в точке K, а стороны BC – в точке H. Расстояние от точки M до прямой KH равно 3. Найдите ∠AOB. |
Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 772]
С помощью циркуля и линейки постройте точку, из которой данный круг и данный отрезок видны под данными углами.
Радиус окружности, описанной около прямоугольного треугольника, относится к радиусу вписанной в него окружности как 5:2. Найдите площадь треугольника, если один из его катетов равен a.
В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$.
В треугольнике ABC известно, что AB = BC,
AC = 4
В равнобедренную трапецию KLMN (
LM
Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке