ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 211]      



Задача 54855

Темы:   [ Теорема синусов ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Формулы для площади треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Углы между биссектрисами ]
Сложность: 3+
Классы: 8,9

В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности.

Прислать комментарий     Решение


Задача 54900

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Неравенства с площадями ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  AC ≤ 3,  BC ≤ 4,  SABC ≥ 6.  Найдите радиус его описанной окружности.

Прислать комментарий     Решение

Задача 64466

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?

Прислать комментарий     Решение

Задача 98611

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
[ Неравенства для углов треугольника ]
Сложность: 3+
Классы: 10,11

В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

Прислать комментарий     Решение

Задача 102319

Темы:   [ Площадь круга, сектора и сегмента ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите или опровергните следующее утверждение: круг площадью $ {\frac{25}{8}}$ можно поместить внутрь треугольника со сторонами 3, 4 и 5.
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 211]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .