|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Радиус вписанной в треугольник ABC окружности равен 4, причём AC = BC. На прямой AB взята точка D, удалённая от прямых AC и BC на расстояния 11 и 3 соответственно. Найдите косинус угла DBC. |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 509]
Может ли некоторое сечение куба быть правильным пятиугольником?
Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.
Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.
Окружность разделена на равные дуги n диаметрами. Докажите, что основания перпендикуляров, опущенных из произвольной точки M, лежащей внутри окружности, на эти диаметры, являются вершинами правильного многоугольника.
Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 509] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|