|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть AL и AK – внутренняя и внешняя биссектрисы треугольника ABC, P – точка пересечения касательных к описанной окружности в точках B и C. Перпендикуляр, восставленный из точки L к BC, пересекает прямую AP в точке Q. Докажите, что Q лежит на средней линии треугольника LKP. Окружности Ω1 и Ω2 пересекаются в точках A и B. Через точку B проведена прямая, вторично пересекающая Ω1 и Ω2 в точках K и M соответственно. Прямая l1 касается Ω1 в точке Q и параллельна прямой AM. R – вторая точка пересечения прямой QA с Ω2. Докажите, что В остроугольном неравнобедренном треугольнике ABC проведены медиана AM и высота AH. На прямых AB и AC отмечены точки Q и P соответственно так, что QM ⊥ AC и PM ⊥ AB. Описанная окружность треугольника PMQ пересекает прямую BC вторично в точке X. Докажите, что BH = CX. Дан вписанный четырёхугольник ABCD. Внутри треугольника BCD взяли точку La, расстояния от которой до сторон треугольника пропорциональны этим сторонам. Аналогично внутри треугольников ACD, ABD, ABC взяли точки Lb, Lc и Ld соответственно. Оказалось, что четырёхугольник LaLbLcLd вписанный. Докажите, что у ABCD есть две параллельные стороны. Доказать, что существует бесконечно много таких составных n, что 3n–1 – 2n–1 кратно n. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 46]
В треугольнике ABC проведены биссектрисы BB1 и CC1. Известно, что центр описанной окружности треугольника BB1C1 лежит на прямой AC. Найдите угол C треугольника.
В треугольнике ABC BC = 4, AB = 2
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 46] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|