Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 98]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что PQ ⊥ AB.
Правильный n-угольник A1...An вписан в окружность радиуса R; X – точка этой окружности. Докажите, что
|
|
Сложность: 4 Классы: 10,11
|
В выпуклом четырёхугольнике ABCD точка M – середина диагонали AC, точка N – середина диагонали BD. Прямая MN пересекает стороны AB и CD в точках M' и N'. Доказать, что если MM' = NN', то BC || AD.
Дан куб
ABCDA1
B1
C1
D1
с ребром
a . Найдите расстояние
между прямыми
A1
D и
D1
C и постройте их общий перпендикуляр.
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости даны два отрезка A1B1 и A2B2, причём A2B2/A1B1 = k < 1. На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что A3А2/А3А1 = А4А2/А4А1 = k. Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
В3В2/В3В1 = В4В2/В4В1 = k. Найти угол между прямыми А3В3 и А4В4.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 98]