ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Пусть A0 – середина стороны BC треугольника ABC, а A' – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в A0 и проходящую через A'. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге BC, не содержащей A, то еще одна из построенных окружностей касается описанной окружности.

Вниз   Решение


Докажите что в выпуклом многограннике есть две грани с одинаковым числом сторон.

Вверх   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 355]      



Задача 53643

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Углы между биссектрисами ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если  ∠BDE : ∠EDC = ∠BED : ∠DEA,  то треугольник ABC — равнобедренный.

Прислать комментарий     Решение

Задача 111708

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.

Прислать комментарий     Решение

Задача 109531

Темы:   [ Сфера, вписанная в многогранный угол ]
[ Касательные к сферам ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные равные треугольники ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

Точка O – основание высоты четырёхугольной пирамиды. Сфера с центром O касается всех боковых граней пирамиды. Точки A, B, C и D взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки AB, BC и CD проходят через три точки касания сферы с гранями.
Докажите, что отрезок AD проходит через четвёртую точку касания.

Прислать комментарий     Решение

Задача 111712

Темы:   [ Пересекающиеся окружности ]
[ Биссектриса делит дугу пополам ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что  AB = PQ.

Прислать комментарий     Решение

Задача 116675

Темы:   [ Параллелограммы (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательные равные треугольники ]
[ Вписанные и описанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 7,8,9

В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 355]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .