|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи ``65 = 64 = 63''. Тождество Кассини лежит в основе одного геометрического парадокса. Он заключается в том, что можно взять шахматную доску, разрезать ее на четыре части, как показано ниже, а затем составить из этих же частей прямоугольник:
|
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 464]
Дана трапеция ABCD с основаниями
AD = 3
Дана трапеция PQRN с основаниями PN = 8 и QR = 4, боковой
стороной
PQ =
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, лежащей между точками B и C,
причём
BD : BC =
На стороне AB треугольника ABC между точками A и B взята
точка D, причём
AD : AB =
Точки M и N лежат на сторонах соответственно AB и AC треугольника ABC, причём AM = CN и AN = BM. Докажите, что площадь четырёхугольника BMNC по крайней мере в три раза больше площади треугольника AMN.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 464] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|