Страница:
<< 79 80 81 82
83 84 85 >> [Всего задач: 1221]
Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно.
Докажите, что найдётся столбец, произведение чисел в котором тоже отрицательно.
|
|
Сложность: 3 Классы: 8,9,10
|
Даны натуральные числа x1, ..., xn. Докажите, что число можно представить в виде суммы квадратов двух целых чисел.
Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли
получиться так, что все вороны соберутся на одном дереве?
|
|
Сложность: 3 Классы: 7,8,9
|
Докажите, что число 11999 + 21999 + ... + 161999 делится на 17.
Докажите, что если n > 2, то число всех правильных несократимых дробей со знаменателем n чётно.
Страница:
<< 79 80 81 82
83 84 85 >> [Всего задач: 1221]