|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов? Даны две параллельные прямые l и l1. С помощью одной линейки разделите пополам данный отрезок AB, лежащий на l. Даны две параллельные прямые и отрезок, лежащий на одной из них. Удвойте этот отрезок с помощью одной линейки. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 30]
Опишите явный вид многочлена f(x) = f1(x) + f2(x) + ... + fn(x), где fi(x) – многочлены из задачи 61050.
Даны два многочлена P(x) и Q(x) положительной степени, причём P(P(x)) ≡ Q(Q(x)) и P(P(P(x))) ≡ Q(Q(Q(x))).
Даны два различных приведённых кубических многочлена F(x) и G(x). Выписали все корни уравнений F(x) = 0, G(x) = 0, F(x) = G(x). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена F(x).
Докажите, что многочлен степени n имеет не более чем n корней.
Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?
Страница: 1 2 3 4 5 6 >> [Всего задач: 30] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|