ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 118]      



Задача 61111

Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 9,10,11

Пусть a, b – натуральные числа и  (a, b) = 1.  Докажите, что величина    не может быть действительным числом за исключением случаев
(a, b) = (1, 1), (1,3), (3,1).

Прислать комментарий     Решение

Задача 61115

 [Формула Эйлера]
Темы:   [ Комплексная экспонента ]
[ Число e ]
[ Предел функции ]
Сложность: 4+
Классы: 10,11

Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством     Докажите формулу Эйлера:   ea+ib = ea(cos b + i sin b).

Прислать комментарий     Решение

Задача 61089

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Правильные многоугольники ]
Сложность: 2
Классы: 9,10,11

Докажите, что числа wk  (k = 0, ..., n – 1),  являющиеся корнями уравнения  wn = z,  при любом  z ≠ 0  располагаются в вершинах правильного n-угольника.

Прислать комментарий     Решение

Задача 61176

Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 10,11

Докажите, что угол между прямыми, пересекающимися в точке z0 и проходящими через точки z1 и z2, равен аргументу отношения  

Прислать комментарий     Решение

Задача 61195

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 10,11

Докажите, что точка  m = 1/3 (a1 + a2 + a3)  является точкой пересечения медиан треугольника a1a2a3.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .