Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 118]
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть a, b – натуральные числа и (a, b) = 1. Докажите, что величина не может быть действительным
числом за исключением случаев
(a, b) = (1, 1), (1,3), (3,1).
[Формула Эйлера]
|
|
Сложность: 4+ Классы: 10,11
|
Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством
Докажите формулу Эйлера:
ea+ib = ea(cos b + i sin b).
|
|
Сложность: 2 Классы: 9,10,11
|
Докажите, что числа wk (k = 0, ..., n – 1), являющиеся корнями уравнения wn = z, при любом z ≠ 0 располагаются в вершинах правильного n-угольника.
|
|
Сложность: 2+ Классы: 10,11
|
Докажите, что угол между прямыми, пересекающимися в точке z0 и проходящими через точки z1 и z2, равен аргументу отношения
|
|
Сложность: 2+ Классы: 10,11
|
Докажите, что точка m = 1/3 (a1 + a2 + a3) является точкой пересечения медиан треугольника a1a2a3.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 118]