Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 416]
|
|
Сложность: 3+ Классы: 10,11
|
Неравенство
Иенсена. Докажите, что если функция
f (
x) выпукла вверх на
отрезке [
a;
b], то для любых различных точек
x1,
x2,
...,
xn (
n 2) из [
a;
b] и любых положительных
,
, ...,
таких, что
+
+...+
= 1, выполняется неравенство:
f (
x1 +...+
xn) >
f (
x1) +...+
f (
xn).
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?
Рассматривается функция
y =
f (
x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа
k ≠ 0 соотношению
f (
x +
k)
. (1 −
f (
x)) = 1 +
f (
x). Доказать, что
f (
x) — периодическая функция.
|
|
Сложность: 3+ Классы: 10,11
|
Вавилонский алгоритм вычисления
.
Последовательность чисел {
xn} задана
условиями:
x1 = 1,
xn + 1 =
xn +
(
n 1).
Докажите, что
xn =
.
|
|
Сложность: 3+ Классы: 10,11
|
К чему будет стремиться последовательность из предыдущей
задачи
9.46, если в качестве начального условия выбрать
x1 = - 1?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 416]