Страница:
<< 183 184 185 186
187 188 189 >> [Всего задач: 1221]
В квадрате отметили 20 точек и соединили их непересекающимися отрезками друг с другом и с вершинами квадрата так, что квадрат разбился на треугольники. Сколько получилось треугольников?
[Теорема Вильсона]
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что для простого p (p – 1)! ≡ – 1 (mod p).
|
|
Сложность: 4- Классы: 8,9,10,11
|
На доске написано n натуральных чисел. Пусть ak – количество тех из них, которые больше k. Исходные числа стерли и вместо них написали все положительные ak. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел.
Например, для чисел 5, 3, 3, 2, получается следующая цепочка (5, 3, 3, 2) → (4, 4, 3, 1, 1) → (5, 3, 3, 2).
Три окружности касаются друг друга извне и касаются четвёртой окружности изнутри. Их центры были отмечены, а сами окружности стёрты. Оказалось, что невозможно установить, какая из отмеченных точек – центр объемлющей окружности. Докажите, что отмеченные точки образуют прямоугольник.
|
|
Сложность: 4- Классы: 9,10,11
|
На столе лежала кучка серебряных монет. Каждым действием либо добавляли одну золотую монету и записывали количество серебряных монет на первый листок, либо убирали одну серебряную монету и записывали количество золотых монет на второй листок. В итоге на столе остались только золотые монеты. Докажите, что в этот момент сумма всех чисел на первом листке равнялась сумме всех чисел на втором.
Страница:
<< 183 184 185 186
187 188 189 >> [Всего задач: 1221]