ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 965]      



Задача 64359

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 10,11

Даны многочлены P(x) и Q(x) десятой степени, старшие коэффициенты которых равны 1. Известно, что уравнение  P(x) = Q(x)  не имеет действительных корней. Докажите, что уравнение P(x + 1) = Q(x – 1) имеет хотя бы один действительный корень.

Прислать комментарий     Решение

Задача 64719

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 9,10,11

Автор: Жуков Г.

Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
Докажите, что корни трёхчлена  f(x) имеют разные знаки.

Прислать комментарий     Решение

Задача 64888

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 10,11

Решите систему:   .

Прислать комментарий     Решение

Задача 64955

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3
Классы: 9,10,11

Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

Прислать комментарий     Решение

Задача 65431

Тема:   [ Квадратный трехчлен (прочее) ]
Сложность: 3
Классы: 9,10,11

Существует ли квадратный трёхчлен, который при  x = 2014, 2015, 2016  принимает значения 2015, 0, 2015 соответственно?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .