Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 211]
В треугольнике даны два угла β и γ и радиус R описанной
окружности. Найдите радиус вписанной окружности.
В треугольнике ABC AC ≤ 3, BC ≤ 4, SABC ≥ 6. Найдите радиус его описанной окружности.
|
|
Сложность: 3+ Классы: 8,9,10
|
а) Дан выпуклый четырёхугольник ABCD. Пусть r1 ≤ r2 ≤ r3 ≤ r4 – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что r4 > 2r3?
б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть r1 ≤ r2 ≤ r3 ≤ r4 – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что r2 > 2r1?
|
|
Сложность: 3+ Классы: 10,11
|
В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.
Докажите или опровергните следующее утверждение: круг площадью
можно поместить внутрь треугольника со сторонами 3, 4 и 5.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 211]