ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сколько последовательностей {a1, a2, ..., a2n}, состоящих из единиц и минус единиц, обладают тем свойством, что a1 + a2 + ... + a2n = 0, а все частичные суммы a1, a1 + a2, ..., a1 + a2 + ... + a2n неотрицательны? На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1. Докажите, что
площадь одного из треугольников
AB1C1, A1BC1, A1B1C не
превосходит:
Сколько целых чисел от 1 до 2001 имеют сумму цифр, делящуюся на 5? Дана таблица размера m×n (m, n > 1). В ней отмечены центры всех клеток. Какое наибольшее число отмеченных центров можно выбрать так, чтобы никакие три из них не являлись вершинами прямоугольного треугольника? |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1008]
а) Найдите производящую функцию последовательности чисел Люка (определение чисел Люка смотри в задаче 60585) б) Пользуясь этой функцией, выразите Ln через φ и
Найдите производящие функции последовательности многочленов Фибоначчи F(x, z) = F0(x) + F1(x)z + F2(x)z² + ... + Fn(x)zn + ...
На доске написано n натуральных чисел. Пусть ak – количество тех из них, которые больше k. Исходные числа стерли и вместо них написали все положительные ak. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел.
Найдите наибольшее число цветов, в которые можно покрасить рёбра куба (каждое ребро одним цветом) так, чтобы для каждой пары цветов нашлись два соседних ребра, покрашенные в эти цвета. Соседними считаются рёбра, имеющие общую вершину.
Среди n рыцарей каждые двое – либо друзья, либо враги. У каждого из рыцарей ровно три врага, причём враги его друзей являются его врагами.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1008]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке