|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Продолжения сторон KN и LM выпуклого четырёхугольника KLMN пересекаются в точке P, а продолжения сторон KL и MN – в точке Q. Отрезок PQ перпендикулярен биссектрисе угла KQN. Найдите сторону KL, если KQ = 12, NQ = 8, а площадь четырёхугольника KLMN равна площади треугольника LQM. |
Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 1023]
В классе имеется a1 учеников, получивших в течение года хотя бы одну двойку, a2 учеников, получивших не менее двух двоек, ..., ak учеников, получивших не менее k двоек. Сколько всего двоек в этом классе? (Предполагается, что ни у кого нет более k двоек.)
Сколько существует целых чисел от 1 до 16500, которые
Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.
При каких натуральных n число (
Докажите, что каждое натуральное число n может быть 2n–1 – 1 различными способами представлено в виде суммы меньших натуральных слагаемых, если два представления, отличающихся хотя бы порядком слагаемых, считать различными.
Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 1023] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|