ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Изначально на столе лежат три кучки из 100, 101 и 102 камней соответственно. Илья и Костя играют в следующую игру. За один ход каждый из них может взять себе один камень из любой кучи, кроме той, из которой он брал камень на своем предыдущем ходе (при своём первом ходе каждый игрок может брать камень из любой кучки). Ходы игроки делают по очереди, начинает Илья. Проигрывает тот, кто не может сделать ход. Кто из игроков может выиграть, как бы ни играл соперник? Коэффициенты квадратного уравнения x² + px + q = 0 изменили не больше чем на 0,001. Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному? Решите уравнение в целых числах: x³ + 3 = 4y(y + 1). Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.
Найдите радиус окружности, описанной около равнобедренной трапеции с основаниями 2 и 14 и боковой стороной 10.
Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.
На экране терминала с доступом к "Матрице" горит число, которое каждую минуту увеличивается на 102. Начальное значение числа 123. Хакер Нео имеет возможность в любой момент изменять порядок цифр числа, находящегося на экране. Может ли он добиться того, чтобы число никогда не стало четырёхзначным? Добившись этого, он зациклит действия агентов и спасёт своих друзей. Из 101 далматинца у 29 пятно только на левом ухе, у 17 – только на правом ухе, а у 22 далматинцев нет пятен на ушах. Пусть P – точка пересечения диагоналей четырёхугольника ABCD, M – точка пересечения прямых, соединяющих середины его противоположных сторон, O – точка пересечения серединных перпендикуляров к диагоналям, H – точка пересечения прямых, соединяющих ортоцентры треугольников APD и BPC, APB и CPD. Доказать, что M – середина OH. |
Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 1010]
На доске написано 10 натуральных чисел. Докажите, что из этих чисел можно выбрать несколько чисел и расставить между ними знаки "+" и "–" так, чтобы полученная в результате алгебраическая сумма делилась на 1001.
Докажите, что существуют числа, не менее чем 100 способами представимые в виде суммы 2001 слагаемого, каждое из которых является 2000-й степенью целого числа.
На плоскости дано n > 4 точек, никакие три из которых не лежат на одной прямой.
В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся
Докажите, что число
Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 1010]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке