Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них a человек считают, что будет лучше, b – что будет такой же, и c – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных:  m = a + b/2  и  n = a – c.  Оказалось, что  m = 40.  Найдите n.

Вниз   Решение


Автор: Шатунов Л.

Через вершины $A$, $B$, $C$ треугольника $ABC$ провели прямые $a_1, b_1, c_1$ соответственно. Отразим $a_1$, $b_1$, $c_1$ относительно биссектрис соответствующих углов треугольника $ABC$, получив $a_2$, $b_2$, $c_2$. Пусть $A_1=b_1\cap c_1$, $B_1=a_1\cap c_1$, $C_1=a_1\cap b_1$, аналогично определим $A_2$, $B_2$, $C_2$. Докажите, что у треугольников $A_1B_1C_1$ и $A_2B_2C_2$ одинаковое отношение площади к радиусу описанной окружности (т.е. $\frac{S_1}{R_1}=\frac{S_2}{R_2}$, где $S_i=S(\triangle A_iB_iC_i)$, $R_i=R(\triangle A_iB_iC_i)$).

ВверхВниз   Решение


В десятичной записи положительного числа α отброшены все десятичные знаки, начиная с пятого знака после запятой (то есть взято приближение α с недостатком с точностью до 0,0001). Полученное число делится на α и частное снова округляется с недостатком с той же точностью. Какие числа при этом могут получиться?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2970]      



Задача 52561

Темы:   [ Центральный угол. Длина дуги и длина окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2
Классы: 8,9

Какова угловая величина дуги, если радиус, проведённый в её конец, составляет с её хордой угол в 40°?

Прислать комментарий     Решение

Задача 52586

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8,9

Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.  Проведены хорды AC и BD, пересекающиеся в точке M.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 52598

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8,9

Окружность разделена точками A, B, C, D так, что  ⌣AB : ⌣ BC : ⌣ CD : ⌣ DA = 3 : 2 : 13 : 7.  Хорды AD и BC продолжены до пересечения в точке M.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 53931

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 2
Классы: 8,9

На катете AC прямоугольного треугольника ABC как на диаметре построена окружность, пересекающая гипотенузу AB в точке K.
Найдите CK, если  AC = 2  и  ∠A = 30°.

Прислать комментарий     Решение

Задача 53936

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Биссектриса угла (ГМТ) ]
Сложность: 2
Классы: 8,9

Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что  AM = AN.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 2970]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .