ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 [Всего задач: 100]      



Задача 54646

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ НОД и НОК. Взаимная простота ]
[ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

Дан угол, равный 19°. Разделите его на 19 равных частей с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 65444

Темы:   [ Наглядная геометрия ]
[ Биссектриса угла ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 6,7,8

У листа бумаги только один ровный край. Лист согнули, потом разогнули обратно. A – общая точка ровного края и линии сгиба. Постройте перпендикуляр к этой линии в точке A. Сделайте это без помощи чертёжных инструментов, а лишь перегибая бумагу.

Прислать комментарий     Решение

Задача 103970

Темы:   [ Упаковки ]
[ Теория алгоритмов (прочее) ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 6,7,8

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.
Прислать комментарий     Решение


Задача 64880

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
Сложность: 4
Классы: 10,11

Дан прямоугольный треугольник с гипотенузой AC, проведена биссектриса треугольника BD; отмечены середины E и F дуг BD окружностей, описанных около треугольников ADB и CDB соответственно (сами окружности не проведены). Постройте одной линейкой центры окружностей.

Прислать комментарий     Решение

Задача 66957

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (построения) ]
[ Построения одной линейкой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 9,10,11

Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .