ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 243]      



Задача 66406

Темы:   [ Ортоцентр и ортотреугольник ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4
Классы: 8,9

Фиксированы окружность, описанная около остроугольного треугольника ABC, и вершина C. Ортоцентр H движется по окружности с центром в точке C. Найдите ГМТ середин отрезков, соединяющих основания высот, проведенных из вершин A и B.
Прислать комментарий     Решение


Задача 66789

Темы:   [ Ортоцентр и ортотреугольник ]
[ ГМТ (прочее) ]
Сложность: 4
Классы: 10,11

Дан эллипс $\Gamma$ и его хорда $AB$. Найдите геометрическое место ортоцентров вписанных в $\Gamma$ треугольников $ABC$.
Прислать комментарий     Решение


Задача 103935

Темы:   [ Ортоцентр и ортотреугольник ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 8,9,10

Пусть H – ортоцентр треугольника ABC, X – произвольная точка. Окружность с диаметром XH вторично пересекает прямые AH, BH, CH в точках A1, B1, C1, а прямые AX, BX, CX в точках A2, B2, C2. Доказать, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108025

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 8,9

Пусть p – полупериметр остроугольного треугольника, R и r – радиусы соответственно описанной и вписанной окружностей, q – полупериметр треугольника с вершинами в основаниях высот данного. Докажите, что R:r = p:q .
Прислать комментарий     Решение


Задача 108103

Темы:   [ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 9,10,11

Дан треугольник ABC. В нём H – точка пересечения высот, I – центр вписанной окружности, O – центр описанной окружности, K – точка касания вписанной окружности со стороной BC. Известно, что отрезки  IO || BC.  Докажите, что отрезки  AO || HK.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 243]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .