Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 147]
|
|
Сложность: 5 Классы: 10,11
|
Дано иррациональное число α, 0 < α < ½. По нему определяется новое число α1 как меньшее из двух чисел 2α и 1 – 2α. По этому числу аналогично определяется α2, и так далее.
а) Докажите, что αn < 3/16 для некоторого n .
б) Может ли случиться, что αn > 7/40 при всех натуральных n?
|
|
Сложность: 5 Классы: 10,11
|
Кузнечик прыгает по числовой прямой, на которой отмечены
точки $-a$ и $b$. Известно, что $a$ и $b$ — положительные числа, а
их отношение иррационально. Если кузнечик находится в точке, которая
ближе к $-a$, то он прыгает вправо на расстояние, равное $a$. Если же
он находится в середине отрезка $[-a;b]$ или в точке, которая ближе к
$b$, то он прыгает влево на расстояние, равное $b$. Докажите, что
независимо от своего начального положения кузнечик в некоторый момент
окажется от точки 0 на расстоянии, меньшем $10^{-6}$.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Для произвольного числа $x$ рассмотрим сумму
$$Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\ldots+\left\lfloor\frac{x}{10000}\right\rfloor.$$
Найдите разность $Q(2023) – Q(2022)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
|
|
Сложность: 5 Классы: 9,10,11
|
Дано натуральное число $n$. Для произвольного числа $x$ рассмотрим сумму
$$
Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\cdots+\left\lfloor\frac{x}{10^{n}}\right\rfloor .
$$
Найдите разность $Q\left(10^{n}\right)-Q\left(10^{n}-1\right)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
|
|
Сложность: 7 Классы: 10,11
|
Докажите, что число
+
+
+
+
+
+
иррационально.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 147]