ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 1023]      



Задача 35395

Темы:   [ Комбинаторика (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

На доске n×n расставлено  n – 1  фишек так, что никакие две из них не стоят на соседних (по стороне) клетках.
Докажите, что одну из них можно передвинуть на соседнюю клетку так, чтобы снова никакие две фишки не стояли на соседних клетках.

Прислать комментарий     Решение

Задача 58317

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правильные многоугольники ]
Сложность: 4
Классы: 8,9

Докажите, что число неравных треугольников с вершинами в вершинах правильного n-угольника равно ближайшему к  n²/12  целому числу.

Прислать комментарий     Решение

Задача 60411

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

При каких значениях n все коэффициенты в разложении бинома Ньютона  (a + b)n  нечётны?

Прислать комментарий     Решение

Задача 60447

Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

Прислать комментарий     Решение

Задача 60448

Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 1023]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .