ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 1221]      



Задача 78789

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10

Дано 29-значное число  X = a1...a29  (0 ≤ ak ≤ 9,  a1 ≠ 0).  Известно, что для всякого k цифра ak встречается в записи данного числа a30–k раз (например, если  a10 = 7,  то цифра a20 встречается семь раз). Найти сумму цифр числа X.

Прислать комментарий     Решение

Задача 79240

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 7,8,9

Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

Прислать комментарий     Решение

Задача 79246

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Итерации ]
[ Индукция (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 9,10,11

С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей  K = p1p2...pn;  затем вычисляется сумма  p1 + p2 + ... + pn + 1.  С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.

Прислать комментарий     Решение

Задача 79285

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9

Сумма 100 натуральных чисел, каждое из которых не больше 100, равна 200.
Доказать, что из них можно выбрать несколько чисел, сумма которых равна 100.

Прислать комментарий     Решение

Задача 79437

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10

Доказать, что  11983 + 21983 + ... + 19831983  делится на  1 + ... + 1983.

Прислать комментарий     Решение

Страница: << 121 122 123 124 125 126 127 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .