Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 694]
|
|
Сложность: 3 Классы: 10,11
|
Петя покрасил 100 натуральных чисел в красный цвет и 100 других натуральных чисел — в синий. Вася выписал на доску 200 выражений: для каждого красного числа $n$ записал $\frac{x^n}{1-x}$, а для каждого синего числа $m$ записал $\frac{x^m}{1-x^{-1}}.$ После этого мальчики сложили все записанные выражения, привели подобные и упростили выражение. Докажите, что у них получился многочлен от $x$.
|
|
Сложность: 3 Классы: 8,9,10
|
Дана бесконечная последовательность чисел a1, ..., an, ... Она периодична с периодом 100, то есть a1 = a101, a2 = a102, ... Известно, что a1 ≥ 0,
a1 + a2 ≤ 0, a1 + a2 + a3 ≥ 0 и вообще, сумма a1 + a2 + ... + an неотрицательна при нечётном n и неположительна при чётном n. Доказать, что |a99| ≥ |a100|.
Имеется несколько гирь, общая масса которых равна 1 кг. Каждой гире присвоен
свой номер: 1, 2, 3, .... Доказать, что найдётся такой номер
n, что
масса гири с номером
n строго больше
кг.
|
|
Сложность: 3 Классы: 5,6,7,8
|
Продолжите последовательность чисел: 1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213...
|
|
Сложность: 3 Классы: 7,8,9
|
Найти сумму. Найти сумму
.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 694]