ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 1221]      



Задача 79383

Темы:   [ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
[ Комбинаторика орбит ]
[ Теорема Лагранжа ]
Сложность: 4
Классы: 9,10

На пульте имеется несколько кнопок, с помощью которых осуществляется управление световым табло. После нажатия любой кнопки некоторые лампочки на табло переключаются (для каждой кнопки есть свой набор лампочек, причём наборы могут пересекаться). Доказать, что число состояний, в которых может находиться табло, равно некоторой степени числа 2.

Прислать комментарий     Решение

Задача 61291

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Тригонометрические замены ]
Сложность: 4+
Классы: 9,10,11

Решите системы:

  a)  
  б)  
  в)  
  г)  

Прислать комментарий     Решение

Задача 64718

Темы:   [ Инварианты ]
[ Процессы и операции ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9,10

На окружности отмечены 10 точек, занумерованные по часовой стрелке: A1, A2, ..., A10, причём их можно разбить на пары симметричных относительно центра окружности. Изначально в каждой отмеченной точке сидит по кузнечику. Каждую минуту один из кузнечиков прыгает вдоль окружности через своего соседа так, чтобы расстояние между ними не изменилось. При этом нельзя пролетать над другими кузнечиками и попадать в точку, где уже сидит кузнечик. Через некоторое время оказалось, что какие-то 9 кузнечиков сидят в точках A1, A2, ..., A9, а десятый сидит на дуге A9A10A1. Можно ли утверждать, что он сидит именно в точке A10?

Прислать комментарий     Решение

Задача 64926

Темы:   [ Системы точек ]
[ Разбиения на пары и группы; биекции ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Проективная геометрия (прочее) ]
Сложность: 4+
Классы: 10,11

На плоскости даны n  (n > 2)  точек, никакие три из которых не лежат на одной прямой. Сколькими различными способами это множество точек можно разбить на два непустых подмножества так, чтобы выпуклые оболочки этих подмножеств не пересекались?

Прислать комментарий     Решение

Задача 65713

Темы:   [ Соображения непрерывности ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9,10,11

Автор: Власова Н.

По кругу стоят n мальчиков и n девочек. Назовём пару из мальчика и девочки хорошей, если на одной из дуг между ними стоит поровну мальчиков и девочек (в частности, стоящие рядом мальчик и девочка образуют хорошую пару). Оказалось, что есть девочка, которая участвует ровно в 10 хороших парах. Докажите, что есть и мальчик, который участвует ровно в 10 хороших парах.

Прислать комментарий     Решение

Страница: << 144 145 146 147 148 149 150 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .