ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

а) Спортивный клуб насчитывает 30 членов, из которых надо выделить четыре человека для участия в забеге на 1000 метров. Сколькими способами это можно сделать?
б) Сколькими способами можно составить команду из четырёх человек для участия в эстафете  100 м + 200 м + 300 м + 400 м?

Вниз   Решение


Применим метод Ньютона (см. задачу 61328) для приближённого нахождения корней многочлена   f(x) = x² – x – 1. Какие последовательности чисел получатся, если
  а)  x0 = 1;   б)  x0 = 0?
К каким числам будут сходиться эти последовательности?
Опишите разложения чисел xn в цепные дроби.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 87213

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан тетраэдр ABCD , в котором AB = BD = 3 , AC = CD = 5 , AD = BC = 4 . Найдите AM , где M – точка пересечения медиан грани BCD .
Прислать комментарий     Решение


Задача 87214

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан тетраэдр AB С D , в котором AB = AC = 5 , AD = BC = 4 , BD = CD= 3 . Найдите DM , где M – точка пересечения медиан грани ABC .
Прислать комментарий     Решение


Задача 87215

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
Сложность: 3
Классы: 8,9

Дан тетраэдр AB С D , в котором AB = 6 , AC = 7 , AD = 3 , BC = 8 , BD = 4 , CD = 5 . Найдите CM , где M – точка пересечения медиан грани ADB .
Прислать комментарий     Решение


Задача 86966

Тема:   [ Высота пирамиды (тетраэдра) ]
Сложность: 3+
Классы: 10,11


Боковые ребра пирамиды равны между собой. Докажите, что высота пирамиды проходит через центр окружности, описанной около основания.

Прислать комментарий     Решение


Задача 86967

Тема:   [ Высота пирамиды (тетраэдра) ]
Сложность: 3+
Классы: 10,11


Основание пирамиды - прямоугольный треугольник с гипотенузой, равной c, и углом в 30o. Боковые ребра пирамиды наклонены к плоскости основания под углом в 45o. Найдите объем пирамиды.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .