Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 239]
Дан куб
ABCDA1
B1
C1
D1
с ребром
a . Найдите расстояние
между прямыми
BD1
и
DC1
и постройте их общий перпендикуляр.
|
|
Сложность: 3 Классы: 10,11
|
На ребрах произвольного тетраэдра указали направления. Может ли сумма полученных таким образом шести векторов оказаться равной нуль-вектору?
В выпуклом четырёхугольнике ABCD стороны равны соответственно: AB = 10, BC = 14, CD = 11, AD = 5. Найдите угол между его диагоналями.
Дан правильный шестиугольник ABCDEF. Известно, что
= ,
= . Найдите векторы
,
,
и
, где M — середина
стороны EF.
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке.
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 239]