Страница:
<< 24 25 26 27 28
29 30 >> [Всего задач: 149]
|
|
Сложность: 4- Классы: 8,9,10
|
Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
а) P(n) ≥ n – 3;
б) P(n) ≤ 2n – 7;
в) P(n) ≤ 2n – 10 при n ≥ 13.
|
|
Сложность: 4- Классы: 8,9,10,11
|
На какое максимальное число частей могут разбить координатную плоскость xOy графики 100 квадратных трехчлёнов вида
y = anx² + bnx + cn (n = 1, 2, ..., 100)?
|
а) Пусть 0 < k < 1. На сторонах AB, BC и CA треугольника ABC отметим точки E, А и G таким образом, что
AE : EB = BF : FC = CG : GA = k.
Найдите отношение площади треугольника, образованного прямыми АF, BG и CE, к площади треугольника АВС (см. рис.).
б) Разрежьте треугольник шестью прямыми на такие части, из которых можно сложить семь равных треугольников.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
Куб с ребром
2
n+1
разрезают на
кубики с ребром 1 и бруски размера
2
x 2
x 1
. Какое
наименьшее количество единичных кубиков может при этом получиться?
а) Докажите, что в любом многоугольнике, кроме треугольника, есть хотя бы одна диагональ, целиком лежащая внутри него.
б) Выясните, какое наименьшее число таких диагоналей может иметь n-угольник.
Страница:
<< 24 25 26 27 28
29 30 >> [Всего задач: 149]