Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 1221]
|
|
Сложность: 3- Классы: 7,8,9
|
Положительные числа a, b, c таковы, что a ≥ b ≥ c и a + b + c ≤ 1. Докажите, что a² + 3b² + 5c² ≤ 1.
На доске написано число 12. В течение каждой минуты число либо умножают, либо делят либо на 2, либо на 3, и результат записывают на доску вместо исходного числа. Докажите, что число, которое будет написано на доске ровно через час, не будет равно 54.
Решите уравнение:
1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : x))))).
Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть
всего молока и шестую часть всего кофе. Сколько человек в семье?
По кругу расставлены цифры
1, 2, 3,..., 9 в произвольном порядке.
Каждые три цифры, стоящие подряд по часовой стрелке, образуют трёхзначное
число. Найдите сумму всех девяти таких чисел. Зависит ли она от порядка,
в котором записаны цифры?
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 1221]