ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1221]      



Задача 116147

Темы:   [ Подсчет двумя способами ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 7,8,9

Можно ли в клетки квадрата 10×10 поставить некоторое количество звёздочек так, чтобы в каждом квадрате 2×2 было ровно две звёздочки, а в каждом прямоугольнике 3×1 – ровно одна звёздочка? (В каждой клетке может стоять не более одной звёздочки.)

Прислать комментарий     Решение

Задача 32136

Темы:   [ Подсчет двумя способами ]
[ Шестиугольники ]
Сложность: 2+
Классы: 7,8,9

На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?

Прислать комментарий     Решение

Задача 31365

Тема:   [ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7,8

Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?

Прислать комментарий     Решение


Задача 34882

Тема:   [ Процессы и операции ]
Сложность: 2+

По окружности, сделанной из проволоки, двигаются бусинки с одинаковой угловой скоростью, некоторые - по часовой стрелке, некоторые - против. При столкновении две бусинки разлетаются в разные стороны с прежними скоростями. Докажите, что в некоторый момент начальное расположение бусинок повторится.
Прислать комментарий     Решение


Задача 34891

Тема:   [ Подсчет двумя способами ]
Сложность: 2+

В квадрате 2000*2000 расставлены числа так, что в любом квадрате 2*2 сумма левого верхнего числа и правого нижнего числа равна сумме левого нижнего числа и правого верхнего числа. Докажите, что сумма чисел, стоящих в левом верхнем и правом нижнем углах квадрата 2000*2000, равна сумме чисел, стоящих в двух других углах.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .