ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Буквы русского алфавита занумерованы в соответствии с таблицей:
Докажите, что составное число n всегда имеет делитель, больший 1, но не больший В вершинах 100-угольника расставлены числа так, что каждое равно среднему арифметическому своих соседей. Докажите, что все они равны. |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 105]
Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
Даны многочлены P(x), Q(x). Известно, что
для некоторого многочлена R(x, y) выполняется равенство
P(x) – P(y) = R(x, y)(Q(x) – Q(y)).
Петя покрасил 100 натуральных чисел в красный цвет и 100 других натуральных чисел — в синий. Вася выписал на доску 200 выражений: для каждого красного числа $n$ записал $\frac{x^n}{1-x}$, а для каждого синего числа $m$ записал $\frac{x^m}{1-x^{-1}}.$ После этого мальчики сложили все записанные выражения, привели подобные и упростили выражение. Докажите, что у них получился многочлен от $x$.
Докажите, что a²pq + b²qr + c²rp ≤ 0, если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию p + q + r = 0.
Докажите, что при любом натуральном n
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 105]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке