|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Два противоположных ребра треугольной пирамиды равны a , два других противоположных ребра равны b , два оставшихся равны c . Найдите косинус угла между рёбрами, равными a . Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 519]
В равнобедренном треугольнике ABC (AB = BC) на высоте BD как на диаметре построена окружность. Через точки A и C к окружности проведены касательные AM и CN, продолжения которых пересекаются в точке O. Найдите отношение AB/AC, если OM/AC = k и высота BD меньше основания AC.
В точках A и B прямой, по одну сторону от неё, восстановлены два перпендикуляра AA1 = a и
BB1 = b.
В равнобедренной трапеции ABCD AB = CD = 3, основание
AD = 7, ∠BAD = 60°. На диагонали BD расположена точка M так, что BM : MD = 3 : 5.
В треугольнике ABC точка M лежит на стороне AC, а точка L на стороне BC расположена так, что BL : LC = 2 : 5. Прямая, проходящая через точку L параллельно стороне AB, пересекает отрезок BM в точке O, причём BO : OM = 7 : 4. Найдите отношение, в котором точка M делит сторону AC.
На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 519] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|