Страница:
<< 123 124 125 126
127 128 129 >> [Всего задач: 1221]
|
|
Сложность: 4- Классы: 7,8,9
|
Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла
с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D.
|
|
Сложность: 4- Классы: 7,8,9
|
В клетки шахматной доски записаны числа от 1 до 64 (первая горизонталь
нумеруется слева направо числами от 1 до 8, вторая от 9 до 16 и т. д.). Перед
некоторыми числами поставлены плюсы, перед остальными – минусы, так что в
каждой горизонтали и в каждой вертикали по четыре плюса и по четыре минуса. Докажите, что сумма всех чисел равна 0.
Дано натуральное число n. Рассматриваются такие тройки различных
натуральных чисел (a, b, c), что a + b + c = n. Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через K(n). Докажите, что
а) K(n) > n/6 – 1;
б) K(n) < 2n/9.
Дан выпуклый восьмиугольник ABCDEFGH, у которого все внутренние углы равны между собой, а стороны равны через одну – AB = CD = EF = GH,
BC = DE = FG = HA (будем называть такой восьмиугольник полуправильным). Проводим диагонали AD, BE, CF, DG, EH, FA, GB и HC. Среди частей, на которые эти диагонали разбивают внутреннюю область восьмиугольника, рассмотрим ту, которая содержит его центр. Если эта часть – восьмиугольник, он снова является полуправильным (это очевидно); в этом случае в нём проводим аналогичные диагонали, и т. д. Если на каком-то шагу центральная фигура не является восьмиугольником, процесс заканчивается. Докажите, что если этот процесс бесконечный, то исходный восьмиугольник – правильный.
|
|
Сложность: 4- Классы: 8,9,10
|
В каждой целой точке числовой оси расположена лампочка с кнопкой, при
нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон S. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом S за несколько операций можно добиться того, что будут гореть ровно две лампочки.
Страница:
<< 123 124 125 126
127 128 129 >> [Всего задач: 1221]