ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 1308]      



Задача 98259

Темы:   [ Взвешивания ]
[ Троичная система счисления ]
Сложность: 4+
Классы: 7,8,9,10

Геологи взяли в экспедицию 80 банок консервов, веса которых все известны и различны (имеется список). Через некоторое время надписи на консервах стали нечитаемыми, и только завхоз знает, где что. Он может это всем доказать (то есть обосновать, что в какой банке находится), не вскрывая консервов и пользуясь только сохранившимся списком и двухчашечными весами со стрелкой, показывающей разницу весов.
Докажите, что для этой цели ему
  а) достаточно четырёх взвешиваний и
  б) недостаточно трёх.

Прислать комментарий     Решение

Задача 98280

Темы:   [ Теория игр (прочее) ]
[ Неравенство Коши ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
  а) Докажите, что при  n = 98  первый всегда может выиграть.
  б) При каком наибольшем n первый всегда может выиграть?

Прислать комментарий     Решение

Задача 98352

Темы:   [ Взвешивания ]
[ Двоичная система счисления ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Автор: Разин М.

Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
  а) веса гирь набора все целые,
  б) веса не обязательно целые?

Прислать комментарий     Решение

Задача 98572

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

С цепочкой камней домино, сложенной по обычным правилам, разрешается проделывать такую операцию: выбирается кусок из нескольких подряд доминошек с одинаковыми очками на концах куска, переворачивается целиком и вставляется на то же место. Докажите, что если у двух цепочек, сложенных из двух одинаковых комплектов домино, значения очков на концах совпадают, то разрешёнными операциями можно сделать порядок следования доминошек во второй цепочке таким же, как в первой.

Прислать комментарий     Решение

Задача 98603

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 7×7 (всего 64 узла).

Прислать комментарий     Решение

Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .