Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 563]
Окружность пересекает каждую сторону ромба в двух точках и делит её на три
отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке,
и покрасим три отрезка каждой стороны последовательно в красный, белый и синий
цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.
F – выпуклая фигура с двумя взаимно перпендикулярными осями симметрии. Через точку M, лежащую внутри фигуры и отстоящую от осей на расстояния a и b, провели прямые, параллельные осям. Эти прямые делят F на четыре области. Найдите разность между суммой площадей большей и меньшей из областей и суммой площадей двух других.
|
|
Сложность: 3 Классы: 9,10,11
|
Центр круга – точка с декартовыми координатами (a, b).
Известно, что начало координат лежит внутри круга. Обозначим через S+ общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через S– – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину S+ – S–.
AD – диаметр окружности, описанной около четырёхугольника ABCD. Точка E симметрична точке A относительно середины BC.
Докажите, что DE ⊥ BC.
|
|
Сложность: 3 Классы: 8,9,10
|
В прямоугольном треугольнике АВС угол А равен 60°,
М – середина гипотенузы АВ.
Найдите угол IMA, где I – центр окружности, вписанной в данный треугольник.
Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 563]