Страница: 1
2 3 4 5 6 7 >> [Всего задач: 91]
Докажите, что биссектрисы треугольника пересекаются в одной точке.
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке M, биссектрисы B1B2 и C1C2 треугольника
AB1C1 пересекаются в точке N.
Докажите, что точки A, M и N лежат на одной прямой.
Через точку O пересечения биссектрис треугольника ABC
проведены прямые, параллельные его сторонам. Прямая, параллельная AB,
пересекает AC и BC в точках M и N, а прямые, параллельные AC и BC, пересекают AB в точках P и Q. Докажите, что MN = AM + BN и периметр треугольника OPQ равен длине отрезка AB.
Биссектрисы BD и CE треугольника ABC пересекаются в точке O.
Докажите, что если OD = OE, то либо треугольник равнобедренный, либо его угол при вершине A равен 60°.
|
|
Сложность: 3 Классы: 10,11
|
В треугольнике точку пересечения биссектрис соединили с вершинами, в результате он разбился на 3 меньших треугольника. Один из меньших треугольников
подобен исходному. Найдите его углы.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 91]