Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.

Вниз   Решение


Треугольники ABC и A1B1C1 имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник A2B2C2, равный треугольнику A1B1C1 и такой, что прямые AA2, BB2 и CC2 будут параллельны?

ВверхВниз   Решение


Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

ВверхВниз   Решение


Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


На сторонах AP и PD остроугольного треугольника APD выбраны соответственно точки B и C. Диагонали четырёхугольника ABCD пересекаются в точке Q. Точки H1 и H2 являются ортоцентрами треугольников APD и BPC соответственно. Докажите, что если прямая H1H2 проходит через точку X пересечения описанных окружностей треугольников ABQ и CDQ, то она проходит и через точку Y пересечения описанных окружностей треугольников BQC и AQD.
(X ≠ Q,  Y ≠ Q.)

ВверхВниз   Решение


На хорде LM взята точка N, LN = 3, NM = 4, радиус окружности равен 5. Найдите максимальное из расстояний от точки N до точек окружности.

Вверх   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 401]      



Задача 102305

Темы:   [ Теорема косинусов ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Прямоугольный треугольник ABC вписан в окружность. Из вершины C прямого угла проведена хорда CM, пересекающая гипотенузу в точке K. Найдите площадь треугольника ABM, если BK : AB = 3 : 4, BC = 2$ \sqrt{2}$, AC = 4.
Прислать комментарий     Решение


Задача 102359

Темы:   [ Неравенство треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Точка C делит хорду AB окружности радиуса 6 на отрезки AC = 4 и CB = 5. Найдите минимальное из расстояний от точки C до точек окружности.
Прислать комментарий     Решение


Задача 102360

Темы:   [ Неравенство треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

На хорде KL окружности радиуса 7 взята точка M, KM = 5, ML = 6. Найдите максимальное из расстояний от точки M до точек окружности.
Прислать комментарий     Решение


Задача 102361

Темы:   [ Неравенство треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

Хорда BC окружности радиуса 12 разделена точкой D на отрезки BD = 8 и DC = 10. Найдите минимальное из расстояний от точки D до точек окружности.
Прислать комментарий     Решение


Задача 102362

Темы:   [ Неравенство треугольника ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9

На хорде LM взята точка N, LN = 3, NM = 4, радиус окружности равен 5. Найдите максимальное из расстояний от точки N до точек окружности.
Прислать комментарий     Решение


Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .