ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На каждой из сторон треугольника ABC построено по прямоугольнику так, что они попарно касаются вершинами (см. рисунок).
Докажите, что прямые, соединяющие вершины треугольника ABC с соответствующими вершинами треугольника A1B1C1, пересекаются в одной точке.

Вниз   Решение


Вокруг треугольника MKH описана окружность радиуса r с центром в точке O. Длина стороны HM равна a. Для сторон треугольника выполнено соотношение HK2 - HM2 = HM2 - MK2. Найдите площадь треугольника OLK, где L — точка пересечения медиан треугольника MKH.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 98]      



Задача 115330

Темы:   [ Векторы помогают решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Внутри треугольника ABC выбрана произвольная точка X . Лучи AX , BX и CX пересекают описанную около треугольника ABC окружность в точках A1 , B1 и C1 соответственно. Точка A2 симметрична точке A1 относительно середины стороны BC . Аналогично определяются точки B2 и C2 . Докажите, что найдётся такая фиксированная точка Y , не зависящая от выбора X , что точки Y , A2 , B2 и C2 лежат на одной окружности.
Прислать комментарий     Решение


Задача 115721

Темы:   [ Векторы помогают решить задачу ]
[ Геометрические неравенства ]
Сложность: 4
Классы: 8,9

Докажите, что разность квадратов соседних сторон параллелограмма меньше произведения его диагоналей.
Прислать комментарий     Решение


Задача 102485

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 8,9

Вокруг треугольника MKH описана окружность радиуса r с центром в точке O. Длина стороны HM равна a. Для сторон треугольника выполнено соотношение HK2 - HM2 = HM2 - MK2. Найдите площадь треугольника OLK, где L — точка пересечения медиан треугольника MKH.

Прислать комментарий     Решение


Задача 102486

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 8,9

В треугольнике ABC выполнено соотношение между сторонами $ {\frac{AC - AB}{BC + AB}}$ = $ {\frac{AB - BC}{AC + AB}}$. Найдите радиус описанной окружности, если расстояние от ее центра до точки пересечения медиан равно d, а длина стороны AB равна c.

Прислать комментарий     Решение


Задача 108095

Темы:   [ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Поворот на $90^\circ$ ]
Сложность: 5-
Классы: 8,9

Пусть M – точка пересечения медиан треугольника ABC . На перпендикулярах, опущенных из M на стороны BC , AC и AB , взяты точки A1 , B1 и C1 соответственно, причём A1B1 MC и A1C1 MB . Докажите, что точка M является точкой пересечения медиан и в треугольнике A1B1C1 .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 98]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .