ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В первой четверти у Васи было пять оценок по математике, больше всего среди них пятёрок. При этом оказалось, что медиана всех оценок равна 4, а среднее арифметическое 3,8. Какие оценки могли быть у Васи? В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые. Алфавит племени Мумбо-Юмбо состоит из трёх букв. Словом является любая последовательность, состоящая не более чем из четырёх букв. В страшную грозу по верёвочной лестнице цепочкой поднимаются n гномиков. Если вдруг случится удар грома, то от испуга каждый гномик, независимо от других, может упасть с вероятностью p (0 < p < 1). Если гномик падает, то он сшибает и всех гномиков, которые находятся ниже. Найдите: Последовательность состоит из 19 единиц и 49 нулей, стоящих в случайном порядке. Назовём группой максимальную подпоследовательность из одинаковых символов. Например, в последовательности 110001001111 пять групп: две единицы, потом три нуля, потом одна единица, потом два нуля и, наконец, четыре единицы. Найдите математическое ожидание длины первой группы.
Докажите или опровергните следующее утверждение: круг площадью
а) Из любых двухсот целых чисел можно выбрать сто чисел, сумма которых делится на 100. Докажите это.
В равнобедренном треугольнике боковая сторона равна 20, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.
|
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 213]
Докажите или опровергните следующее утверждение: круг площадью
В равнобедренном треугольнике боковая сторона равна 20, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.
В треугольнике ABC известно, что AB = AC, высота AH равна 9, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.
В треугольнике ABC проведена медиана AM.
Доказать, что если в треугольнике ABC со стороной BC = 1 радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r.
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 213]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке