ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В квадрате 6×6 отмечают несколько клеток так, что из любой отмеченной можно пройти в любую другую отмеченную, переходя только через общие стороны отмеченных клеток. Отмеченную клетку называют концевой, если она граничит по стороне ровно с одной отмеченной. Отметьте несколько клеток так, чтобы получилось   а) 10,  б) 11,  в) 12 концевых клеток.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



Задача 103793

Темы:   [ Обход графов ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 7

В квадрате 6×6 отмечают несколько клеток так, что из любой отмеченной можно пройти в любую другую отмеченную, переходя только через общие стороны отмеченных клеток. Отмеченную клетку называют концевой, если она граничит по стороне ровно с одной отмеченной. Отметьте несколько клеток так, чтобы получилось   а) 10,  б) 11,  в) 12 концевых клеток.

Прислать комментарий     Решение

Задача 60645

Темы:   [ Инварианты ]
[ Таблицы и турниры (прочее) ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Ивлев Б.М.

В клетках квадратной таблицы 4×4 расставлены знаки  +  и  – ,   как показано на рисунке.

Разрешается одновременно менять знак во всех клетках, расположенных в одной строке, в одном столбце или на прямой, параллельной какой-нибудь диагонали (в частности, можно менять знак в любой угловой клетке). Докажите, что, сколько бы мы ни производили таких перемен знака, нам не удастся получить таблицу из одних плюсов.

Прислать комментарий     Решение

Задача 98582

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шень А.Х.

а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть?

Изменится ли ответ, если везде в условии заменить ⅔ на   б) ¾;   в) 7/10?

Прислать комментарий     Решение

Задача 105125

Темы:   [ Периодичность и непериодичность ]
[ Таблицы и турниры (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

В клетчатом прямоугольнике m×n каждая клетка может быть либо живой, либо мёртвой. Каждую минуту одновременно все живые клетки умирают, а те мёртвые, у которых было нечётное число живых соседей (по стороне), оживают.
Укажите все пары  (m, n),  для которых найдётся такая начальная расстановка живых и мёртвых клеток, что жизнь в прямоугольнике будет существовать вечно (то есть в каждый момент времени хотя бы одна клетка будет живой)?

Прислать комментарий     Решение

Задача 109591

Темы:   [ Математическая логика (прочее) ]
[ Таблицы и турниры (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого.)

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .