ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадрат разбили на 100 прямоугольников девятью вертикальными и девятью горизонтальными прямыми (параллельными его сторонам). Среди этих прямоугольников оказалось ровно 9 квадратов. Докажите, что два из этих квадратов имеют одинаковый размер.

   Решение

Задачи

Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 1308]      



Задача 98554

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 9,10,11

В ряд стоят 23 коробочки с шариками, причём для каждого числа n от 1 до 23 есть коробочка, в которой ровно n шариков. За одну операцию можно переложить в любую коробочку еще столько же шариков, сколько в ней уже есть, из какой-нибудь другой коробочки, в которой шариков больше. Всегда ли можно такими операциями добиться, чтобы в первой коробочке оказался 1 шарик, во второй – 2 шарика, ..., в 23-й – 23 шарика?

Прислать комментарий     Решение

Задача 98596

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

а) Электрическая схема имеет вид решетки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от каждого узла к любому другому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 5×5 (всего 36 узлов).

Прислать комментарий     Решение

Задача 103847

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 4
Классы: 7,8,9

Квадрат разбили на 100 прямоугольников девятью вертикальными и девятью горизонтальными прямыми (параллельными его сторонам). Среди этих прямоугольников оказалось ровно 9 квадратов. Докажите, что два из этих квадратов имеют одинаковый размер.

Прислать комментарий     Решение


Задача 103852

Темы:   [ Теория игр (прочее) ]
[ Раскраски ]
Сложность: 4
Классы: 7,8

В одной из вершин куба ABCDEFGH сидит заяц, но охотникам он не виден. Три охотника стреляют залпом, при этом они могут ''поразить'' любые три вершины куба. Если они не попадают в зайца, то до следующего залпа заяц перебегает в одну из трёх соседних (по ребру) вершин куба. Укажите, как стрелять охотникам, чтобы обязательно попасть в зайца за четыре залпа.

(В решении достаточно написать четыре тройки вершин, в которые последовательно стреляют охотники.)

Прислать комментарий     Решение


Задача 104013

Тема:   [ Математическая логика (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Жестокий халиф завоевал страну Иванушки-дурацка, а его самого заключил в темницу. Оттуда ведет две двери: одна - в клетку с голодным тигром, а другая - на свободу. У каждой двери стоит по джинну, один из которых всегда говорит правду, а другой всегда лжет. Халиф разрешил Иванушке задать ровно один вопрос одному из джиннов (по внешности джинны не отличаются), на который тот ответит "да" или "нет".
а) Сможет ли Иванушка выйти на свободу?
б) Сможет ли он выйти на свободу, если один из джиннов уйдет курить кальян?
Прислать комментарий     Решение


Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .