Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Докажите, что при гомотетии окружность переходит в окружность.

Вниз   Решение


Можно ли разложить на множители с целыми коэффициентами многочлен  x4 + x3 + x2 + x + 12?

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

ВверхВниз   Решение


Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

ВверхВниз   Решение


а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.

ВверхВниз   Решение


Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением.
Доказать, что существует город, из которого можно проехать в любой другой не более чем по двум дорогам.

ВверхВниз   Решение


Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?

ВверхВниз   Решение


Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Основание равнобедренного треугольника равно a, угол при вершине равен α. Найдите биссектрису, проведённую к боковой стороне.

ВверхВниз   Решение


Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Какие числа могут быть записаны?

ВверхВниз   Решение


Сколько существует различных пирамид, все рёбра которых равны 1?

ВверхВниз   Решение


Расставьте по кругу шесть различных чисел так, чтобы каждое из них равнялось произведению двух соседних.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 67048

Тема:   [ Дроби (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

В ряд записаны  $n > 2$  различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?

Прислать комментарий     Решение

Задача 66702

Темы:   [ Дроби (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Дидин М.

Существуют ли такие 2018 положительных несократимых дробей с различными натуральными знаменателями, что знаменатель разности каждых двух из них (после приведения к несократимому виду) меньше знаменателя любой из исходных 2018 дробей?

Прислать комментарий     Решение

Задача 67186

Темы:   [ Дроби (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 8,9,10

Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число.

Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.
Прислать комментарий     Решение


Задача 103861

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Дроби (прочее) ]
Сложность: 2
Классы: 6,7

Расставьте по кругу шесть различных чисел так, чтобы каждое из них равнялось произведению двух соседних.

Прислать комментарий     Решение

Задача 66366

Темы:   [ Алгебраические неравенства (прочее) ]
[ Дроби (прочее) ]
Сложность: 3
Классы: 7,8,9

Сравните и .
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .