ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Параллелограммы
>>
Признаки и свойства параллелограмма
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан выпуклый четырёхугольник без параллельных сторон. Для каждой тройки его вершин строится точка, дополняющая эту тройку до параллелограмма, одна из диагоналей которого совпадает с диагональю четырёхугольника. Доказать, что из четырёх построенных точек ровно одна лежит внутри исходного четырёхугольника. Решение |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 402]
Дан выпуклый четырёхугольник без параллельных сторон. Для каждой тройки его вершин строится точка, дополняющая эту тройку до параллелограмма, одна из диагоналей которого совпадает с диагональю четырёхугольника. Доказать, что из четырёх построенных точек ровно одна лежит внутри исходного четырёхугольника.
На сторонах BC, CA и AB треугольника ABC выбраны соответственно точки A1, B1 и C1, причём медианы A1A2, B1B2 и C1C2 треугольника A1B1C1 соответственно параллельны прямым AB, BC и CA. В каком отношении точки A1, B1 и C1 делят стороны треугольника ABC?
Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём ∠AMO = ∠MAD.
Точки K и L лежат на сторонах соответственно AB и AC треугольника ABC, причём KB = LC. Точка X симметрична точке K относительно середины стороны AC, а точка Y симметрична точке L относительно середины стороны AB. Докажите, что прямая, содержащая биссектрису угла A, делит отрезок XY пополам.
Докажите, что в любом треугольнике ABC середина стороны BC лежит на отрезке, соединяющем точку пересечения высот с точкой окружности, описанной около этого треугольника, диаметрально противоположной вершине A, и делит этот отрезок пополам.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 402] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|