|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На шахматной доске N×N стоят N² шашек. Можно ли их переставить так, чтобы любые две шашки, отстоявшие на ход коня, после перестановки отстояли друг от друга лишь на ход короля (то есть стояли рядом)? Рассмотрите два случая: В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством. Турист вышел утром из палатки, прошел 10 км на юг, потом 10 км на восток, 10 км на север и оказался у своей палатки. В палатке он обнаружил медведя. а) Какого цвета был медведь? б) Мог ли там оказаться не медведь, а пингвин? |
Страница: 1 2 3 4 >> [Всего задач: 17]
На сфере радиуса 1 дан треугольник, стороны которого – дуги трёх различных окружностей радиуса 1 с центром в центре сферы, имеющие длины меньше $\pi$, а площадь равна четверти площади сферы. Докажите, что четырьмя копиями такого треугольника можно покрыть всю сферу.
а) Какого цвета был медведь? б) Мог ли там оказаться не медведь, а пингвин?
Страница: 1 2 3 4 >> [Всего задач: 17] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|