ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

109 яблок разложены по пакетам. В некоторых пакетах лежит по x яблок, в других – по три яблока.
Найдите все возможные значения x, если всего пакетов – 20.

   Решение

Задачи

Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 1221]      



Задача 103771

Темы:   [ Неравенство треугольника (прочее) ]
[ Сумма длин диагоналей четырехугольника ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

В результате измерения четырёх сторон и одной из диагоналей некоторого четырёхугольника получились числа: 1; 2; 2,8; 5; 7,5. Чему равна длина измеренной диагонали?

Прислать комментарий     Решение


Задача 104877

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметика. Устный счет и т.п. ]
[ Перебор случаев ]
Сложность: 2+
Классы: 7,8,9

109 яблок разложены по пакетам. В некоторых пакетах лежит по x яблок, в других – по три яблока.
Найдите все возможные значения x, если всего пакетов – 20.

Прислать комментарий     Решение

Задача 103828

Темы:   [ Центральный угол. Длина дуги и длина окружности ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 2+
Классы: 5,6,7

На кольцевой дороге расположены четыре бензоколонки: A, B, C и D. Расстояние между A и B — 50 км, между A и C — 40 км, между C и D — 25 км, между D и A — 35 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону).

а) Приведите пример расположения бензоколонок (с указанием расстояний между ними), удовлетворяющий условию задачи.

б) Найдите расстояние между B и C (укажите все возможности).

Прислать комментарий     Решение


Задача 30343

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Перебор случаев ]
Сложность: 3-
Классы: 6,7,8

Сколькими способами из полной колоды (52 карты) можно выбрать
  а) 4 карты разных мастей и достоинств?
  б) 6 карт так, чтобы среди них были представители всех четырех мастей?

Прислать комментарий     Решение

Задача 30604

Темы:   [ Деление с остатком ]
[ Классическая комбинаторика (прочее) ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8,9

Сколько существует натуральных чисел n, меньших 10000, для которых  2nn²  делится на 7?

Прислать комментарий     Решение


Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .