ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через A) записана единица. Через кубик A проходит три слоя, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях. Решение |
Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 1221]
В остроугольном треугольнике ABC провели высоты AL и BM. Затем провели прямую LM до пересечения с продолжением стороны AB.
У квадратного уравнения x² + px + q = 0 коэффициенты p и q увеличили на единицу. Эту операцию повторили девять раз.
Куб со стороной 10 разбит на 1000 кубиков с ребром 1. В каждом кубике записано число, при этом сумма чисел в каждом столбике из 10 кубиков (в любом из трёх направлений) равна 0. В одном из кубиков (обозначим его через A) записана единица. Через кубик A проходит три слоя, параллельных граням куба (толщина каждого слоя равна 1). Найдите сумму всех чисел в кубиках, не лежащих в этих слоях.
Пусть a, b, c – такие целые неотрицательные числа, что 28a + 30b + 31c = 365. Докажите, что a + b + c = 12.
Страница: << 177 178 179 180 181 182 183 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|